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INTRODUCTION

A BRANCHING stochastic process is'a process which corresponds to the
phenomenon such as propagation of animal species and nuclear chain

reactions. In each of these, the growth of a set of initial units (i.e.,
" organisms or particles) is considered. The initial set of units can produce
more units of the same type. These units can themselves generate
more individuals and the set gets enlarged. Such’ processes have been
studied by different authorsl— under various assumptions. In the
discrete models considered, it is assumed that the probabilities of .
'fission of every unit of the set are constants. Also the law of propaga-
tion for each individual is assumed to be same and is taken to be inde-
pendent of the mode of fission of the other. These models generally
hold good over a finite interval of generations with infinite natural
resources. However, under the natural limitations, the probabilities
of fission need not be constauts. Some modified models when the
probabilities of fission of an unit into r units are dependent upon the
existing number of units are considered in this paper. The expres-
sions for the mean, the varlance the probabilities of extinction -and
maximum likelihood estimates of the parameters involved are obtained,

MODIFIED = BRANCHING <PROCESS

A sequence of random variables, "z, 2z, Zg, -+ is a modified
branching process if and only if the following conditions are satisfied :

1. zp, 2z, 'Zy -'- are non-negative integer-valued random-
variables z, =1, P(zz=1)=p; (1), s O) + p, (D) < L.

. 2. Sequence is Markovian.

3. The variable z, is a sum of a number independent identically
distributed random ‘variables, the number depending upon the value
assumed by z,,. It represents the number of uhits in the n-th genera-
tion, :
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4." There exists a function ¢ (j, r) which is a decreasing function
of j uniformly relative to r or otherwise, .and is the probability that any
unit in a population of size j produces r individuals, all these proba-
bilities being indépendent of each other and ¢ (1,r)= p; (). '

Let

where
m=a+b - M
and a + B= my, a and B being posmve ‘constants.
Define the generating functlons for the lst and »n- th generatlon by
file) = Z‘ pl(l)s and fa (S)= Z’ P (@) st

where |s]< 1 and p, (@) is the probablhty of there bemg i 1nd1v1duals
in the n-th generation,

Then, from the definition of ¢ (j, ) we have

L e oo ‘“ﬁ".bz ',—3 J
S =) 20 'Z€(+/)E!+])S
=0 r=0 :

— z'o Dn (I) e (aitf) ‘;(a1+ﬁ)-
=0 L , . o .
= efle-l) f [e80-1]; - | ' @)

" The mean of the (n+1)-th generétion is obtained" from this recur- ‘
sion relation by differentiating it with- respect to s and puttings =1

fn+1(l) = E(Zn+1) ﬁ + afﬂ (1)

- 1 —_ n
—p [T=5 ] +em o
. ~ In the limit as n the number of generations becomes very large,
we have
Lt E(Zn+1)-— I<eae<1 _
f>c0 —a - ;.

=00 .a-}l, : @
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And for the variances consider,

Frua () = B2+ 2086, (1) + a {£," (1) + £ (D)

far () = ﬁz{_—ﬁ} n ﬂ(“ + 208 "[11—_0.2‘2‘4],

I—a

-or

3

et (ot 2 m o @+ 20 (L2
x fm — 2o} anr
The variance of z, is therefore ’given by
) " ) 1 — a2™2y\ | o2 —'{—.'20.[3 ’ >1 — gt
— R2 J— —_4
Var. (z,) = 8 ( — 2..)-&-}5"( T )( — )

e (o 28 my o (ot 2ﬂ)(1

, ><'_(m1 T= a) + a®2m,
ST (A=) |y 1*

I—a ) .
N '_|_ {.3 ((11 — 0-';"1) n a."“lml} -

As n tends to infinity, the» variance reduces to

_ 8 Ba*+28 B, B
DA At SR g Y (R R gy (R N
=t=aa=a . )

The mean and variance of z,, the n'ur‘rfber of units in the u-th
generation as n becomes large attain coistant “values for « < 1. Th
mean -gradually decreases to a value /(1 — a).

PROBABILITY OF EXTINCTION

From the recursion relatlon (2) we" have for the probablhty of
extinction ;
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fl+1 (0) =~e‘._‘8fn (g_a) = e_ﬁfn (sl) . ' <
L e (5) = et i (s) -
‘Where
: . -0l . )
Sy = ea(a,._l—l) and Sn-l = 2 (s‘ — 1).
- ’ i=1

> 5y if 8 > s;. But, since s2/s1 =% %> s5,is monotomqally increas"
ing sequence such that s, <1 as s; < 1. Monotonic and bouinided
sequence s, attalns its hmlt I, which satisfies the equatxon [ = 8t-1),
Con51der, then the sum Sy = )_',‘ (s—1) Wthh is monotomcally

i=1
decreasing with n, as S, — Syy = 5,—1 18 negatlve. Further, (s; — 1)
>—dase*>]l—aandfor 0<a<1- . '

‘S">—-{a+a2+a3+.-. +a"} -

1 — -1
>-—-a{ll—a }

—a

a.
>—a="
The nionotonically decfeasing sequence S,,, of negative terms is
bounded below by — /(1 — o) and so S, also attains a limit, k.. The
probability of extinction f,(0) is, therefore, a monotortically
decreasing ‘bounded sequence and attains a limit. : ‘ ‘

Lt fog (0) = eBeB f, (1) = ef®-1) . glfrari-n
n-»o0

P

= eBUl-2)ta (1) . (6)

It can be further shown that for a < 1 the equation x = e*=-1
has only two roots /; = 1-and /, < 1.. The probability of extinction, .
in this case, attajns the value ef‘'.k—2 as n becomes large, and for «>1.
with zero limiting value of probablhty of extinction z, dlverges to
1nﬁmty

Thc\ Table 1 glves the “total number, n, of generatlons
required to attain the limit /= -9991 for different values of a < 1
and the probablhty of extmctlon in the n-th generatlon These pro-
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ration and- also for the case, with 1% initial advantage.  In the sub--
sequent generations, the selective advantage is -determined by values
- of a and B. Since, the number » leading s, to a limit / is determined
independently, of the probability of extinction, the probability of
extinction in all generations from # onwards remains stationary.

- TABLE I -\ o -
Withno - . With1% _ : |
a  n ' initial initial Difference -
' ' " advantage -advantage ' [
0 1. 3679 . -364] o -0038 |
-1 3. -3693 . +3654 -0039
2 5 3751 . 3703 0048
36 3844 3791 0053 i
4 8 +3991 3031 0060 -
‘510 -4186 4116 -0070 !
6 13 +4401 a0 +0089
71 as0 a8 0l
-é 26 5560 +5403 0157
9 50 +6661 -6397 T 0264 I

ESTIMATION OF a AND B .

With no selective: advantage or disadvantage the first genera-
tion mean is 1, and therefore subject to the condition e 4 8 = 1, the
maximum likelihood. estimates of the two parameters of the process
can be obtained. Let the growth of the process be observed up to n-th
generation. If xy, 3, 3, *** X, be the number -of upits in the respec-
tive generations '

e"(altn-l-ﬁ) . (ax“+ ﬁ)xn-{-l

P [Zﬂ+]. —_— fniﬁ‘. l Z’P = -”-] =

Xpt1 !

/
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3 : " and
! L = P(xm xla x.2a e n,) = P(xn 1 xn~]_) P (xn—q l xn—z)
| N P (xafx1) P (1)
. LogL=—2 (dx,dl' +H+ X x,lldg (ax,y + B) + const.
- . r=1 . r=1 T
~ Differentiating the likelihood function and equating to zero, we
have ' _ : o : A

| , B X Xra Z__x_r__n d8 =0
| . [ @t B ]“+[ e ]3 v
! r=1
E » ;o ' .M
l

where _ o : o
L X, =X+ 3w
This, together with the equation da 4 df =0 gives

®

XX ‘ X, o - .
SO
Z ax1—1+13 ’ u' axr—‘1+ B n -

r=1 r=1 -

for a and B by the method of successive approximation to obtain the
maximum. likelihood estimates of ‘@ and B.- As a particular case when
* o = 0 the mean value of the number Of units in every generation - is

|

!

i ' Equatlon @) together with the relatlon a + B =1 can be solved
I

|

‘ fixed at B and its estimate is given by B = (X./n).

COVARIANCE FUNCTION

We consider the covariance function of the Process Zm, Zms.* *Zus
after a sufficiently large number of generations, m,, such that

. . v | ] ' E_’(Zm)=lf_;+EA

where ¢ is a small positive constant.

.« ! For, m > m,, neglecting terms in e

l

| .

» ‘ 4V'E(Z'"_ = )("—l—a
i" i ",~=im@Ek*
’» | | r=o | B

"'m—']
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| = 8
n~—m
—— —_— n._m — a'

: -, Z Pm(l‘) (r 1 - q)_ (ra. 1 — a)
r=0 o - , )
S 2

L= Z Pm (1) (r _—\If a) an-m

re=0

Lo . Ve - 2
g g (Z __B )
l—a

_ @™ B
(a—- a) (1— a2)

The covariance function, therefore takes the form

B2 )(W -1—a : #(al_a)

which shows that the Morkovran process ‘is nearly stationary, after
a sufficiently large number of generatrons

-

- SOME OTHER FORMS OF $ Uy 7)

In the above, Poisson form for ¢ (J, r) is adopted as it satisfies the.
required conditions.. We 'shall consider some alternative’ forms for
U, n ‘which satisfy these

Let

[==]

. ¢(J r)_='e”?/"' Z %(}@)(1_‘;‘_ a)”_

ritr.=r

which is the coefficient s* in [1 — a (s — 1)]-1 eF®-14_  This leads to the
recursion relation f,; (s) = efV f, [1 — a (s — D]X. The mean num-
ber of units in the n-th generation-in this case ahd in the other two
cases to be considered is

= /3 (1 — anhl) + “7:'}"1 my,

l—wo

. - - i
the same as in Poisson form The variance however drﬁ’ers in each
case, In the present case, it is
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e(t —am) 2 () + 2052 iy

l—a (l—a)

+ Zﬂa"”l(ml 71 f a) '(1 1-_'-—01,:2‘)

© a2 (202 4 B2 4 2af) — m,E + m,

. The probabxhty of extlnctlon in the. (n 4 1)-th generatlon is ngen
"Y fn+1 (0) = eﬁs,,»—ﬁfl (s,) where ‘

I N P
=i —aGa=p 2 Si= 2 =0

Now, Sy > Syg = Spg *" > 83- if s>, and as

Sn

a

Sy — 8§ = TFada >0, s, -is an increasing monotonic
. T Lo

sequence bounded by 1 and for 0 < a< 1 attains its bound. As
before since (s; — 1) > —a%, S, is monotinically decreasing sequence
of negative terms bounded by — a/fl —a), it tends to a limit k,. -

The limiting values of the probabilities of extinction for different Values
of a are given by eP&s1 . ) ]

Similarly,

40N =+ B e Z (1+ﬂ) r(1+r;)

r1+r =T
thch is the coefﬁment of s" in [1 — ﬁ(s — 1)]~1l: ea(s~1) '
gives the recursion relatlon ' S -
Son () =[1 — B(s — DS, [e**]
and the variance of z, as~

- {1 — a¥2 af(a+ 2 — g¥n-
- 2p2 (1 3 ) + ﬂ((l ja)ﬁ) 11 ¢ 2' 4)_*_(1,%"‘3 m, (a+2ﬁ) .

(n; - ) (a® + 2f) (1 = ) |
. + a.2""2 (a 282 4 2af8) — m, + my.
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The probablhty of extinction in this case for (n + 1)-th gcneratlon is
given by

Fra @) = (1 + By (5000) _1_’?'{[1. — B(si— DI After a finite
number of generations ] B(s,— 1) |1_< 1, therefore, the inﬁnite prodltct
H [l — B(s; — DI as n increases is convergent as 2, (s; — 1) is con~

vergent and the product tends to a limit k,. The hmltmg value of
.the probability of extinction as n tends to infinity is k, (1 + B)L"

Finally, the form
¢ G, r) = (1 + a)2 (1 + gy

/ .. ) | Z(1+ﬂ)(1+a) (1+r2)

ritro=y

. the coefﬁ01ent of s 1n [1— 5(2 — 1)]*1/J [’1 Za(s— 1)] leads to the
recursion relation

f..+1 ©) = =[1 — 8@ — DI, [ — a(S — i

and the variance of Z,, as - E
2n—2 2aﬁ2 1 _ a2n-—4
2
23( )+(l—a)(l—a2)'

+2far? (ml - = a) (11‘_“’:2)

. + zﬂm'laen-s + 2q2m-2 (a ._*_ /92 + aﬁ) _ mnz + m,.

"fhe probability of extinction in the >(n + 1)-th generétion is .
gyt H (1 —B(si — DI — als, — DI

As n tends to infinity this attains a limiting value &, (1 4 B) Whel‘e '
ks is the limit of the product H [1 — B(s; — N

Table II gives the Iimiting values of the mean, variance and the
probabilities of extinction in each of the four cases. ’
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TABLE II
' : Probability
$(r) Mean Variance of .
. - extinction
1. Poisson Ry ) efti-1)
2. Poisson Binomial B B ' ePes1)
: l—a (I—a) _
g B B(1-aBhp) (g
. 3. Blnglnlal-Expopentlalm = (= ’kz (1+8)
4 BomialBinemia B BUFEHE) (1t
4. Binomial-Binomial —a (D) k7t (14-8)

The expression for covariance function for the process in each
of the four cases after a sufficiently large number of generations
is o™ Var.(Z,), m > mj,. : '

ILLUSTRATION

The modified branching process considered here occurs in the
study of population growth of unicellular organisms under controlled
conditions. In the branching process evolving, while finding the pro-
bability of survival of mutant gene, the probability of producing r off-
springs is assumed to be independent of the population size. Con-
sider a single mutant in a population consisting of 44 individuals where
one of A genes mutates to a new allele a. This single mutant gives off-
springs in the population of 44 individuals. Let g be the number of
offsprings produced by AA X Aa matings. The probability that the
new allele @ will be absent among ¢ offsprings is . For obtaining
total probability that @ will be lost in # generations, we make an assump-
tion that the mean number of offsprings per mating.in the first generation
is-q = 2, and the number of 4a offsprings are distributed according to
Poisson series, which implies that the average number of mutant indivi-
duals in the first generation is unity. Further po (1), p(1), py(2), - -+
form the respective terms in the series e1{1, 1, 1/2!, 1/31,---}, ie,
f(s) = St where f(s) is the generating function of the number of
mutants in the first generation. If it be further assumed that in the

6
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subsequent generations, the probabilities of producing r (r > ry) off-
springs are inversely' dependent upon the size of the population of the
mutant individuals in that generation, this process reduces to the modi-
fied branching process with the condition that o+ f=1. This
shows -that. £,/ (1) = [ for -all n and ' '

— qg2n-2

var. @)= - ) L a2 - a),‘{ L=ert N
+ «¥3(Q2 — a) + "% |

The constant value of the mean of the n-th generation shows that
there is neither advantage nor disadvantage throughout the process
though the probability of producing offsprings is inversely dependent
on the number- of mutants. For different value of a the probabilities
of extinction would be same as given in Table I.
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